3 and 4 .Determinants and Matrices
hard

यदि रैखिक समीकरण निकाय $x + y + z =5$, $x +2 y +2 z =6$, $x +3 y +\lambda z =\mu,(\lambda, \mu \in R )$ के अनन्त हल है, तो $\lambda+\mu$ का मान है

A

$12$

B

$7$

C

$10$

D

$9$

(JEE MAIN-2019)

Solution

$x + 3y + \lambda z – u = a\left( {x + y + z – 5} \right) + b\left( {x + 2y + 2z – 6} \right)$

Comparing coefficients we get 

$a+b=1$ and $a+2b=3$

$(a,b)=(-1,2)$

So, $x + 3y + \lambda z – u = x + 3y + 3z – \lambda $

$ \Rightarrow u = 7,\lambda  = 3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.